●太陽♥大父♥人間♥海印導師●
관련 URL 주소 : https://namu.wiki/w/%ED%83%9C%EC%96%91
1. 개요
1. 개요
태양(太陽, Sun)은 태양계의 중심에 존재하는 항성(별)으로, 태양계의 유일한 항성이자 에너지의 근원이다. 태양이 있기에 지구에 낮과 밤의 구분, 사계절과 기후 더 나아가 생명이 존재할 수 있다. 태양은 우리 은하 내에서도 드물게 존재하는 G형 주계열성으로, 덕분에 4광년 떨어진 센타우루스자리 알파에서도 태양은 맨눈으로 잘 보일 정도로 밝은 별이다.[7]
2. 특징
태양의 핵에서 생성되는 에너지의 양은 1 m3당 약 276.5 W로, 이것은 고작 도마뱀의 대사량 정도밖에 안 되는 일률이다. 즉 부피 당으로는 인간이 체온으로 내는 열이 더 많다. 태양이 많은 에너지를 내는 것은 부피당 일률이 높기 때문이 아니라 핵 자체의 부피가 어마어마하게 크기 때문이다.
태양이 1초에 만들어 내는 에너지는 3.9×1026 J[10] 이며 E=mc2의 공식에 의해 1초 동안에 657,000,000 t의 수소가 합쳐져서 653,000,000 t의 헬륨이 생성되어 줄어든 질량만큼 에너지로 전환된다. 하지만 태양이 평생 에너지로 전환되어 소모하는 질량은 0.1%도 되지 않으며, 이는 블랙홀 충돌[11]이나 초신성 폭발, 블랙홀에 빨려 들어가는 가스가 강착 원반의 형태가 되어 방출하는 에너지 효율[12]에 비하면 턱없이 적은 비율이다.
지구에 도달하는 열은 태양이 내는 열의 22억 분의 1 정도다.[13]
태양의 핵에서 핵융합을 통해 발생한 광자가 태양 표면까지 도달하는 데는 약 100,000년이 걸린다. 단순히 빛의 속도로 태양의 반경을 지나치는 데에는 2초면 충분하지만 태양 내부는 매우 불투명하기 때문에 흡수-재방출을 거쳐 탈출하는 데 걸리는 시간이 매우 길다. 반면 똑같이 핵융합의 부산물인 중성미자의 경우 물질의 간섭을 거의 받지 않기 때문에 거의 빛의 속도로 태양을 탈출한다. 따라서 태양 중성미자를 검출함으로써 태양 중심부에서는 아직도 핵융합이 활발하게 이루어지고 있음을 확인 가능하다. 한편 태양으로부터 오는 중성미자의 검출량이 예측값의 1/3에 불과해 한동안 수수께끼로 남아 있었지만 중성미자 진동이 발견됨으로써 해결되었다.
안드로메다 은하와 우리 은하가 합쳐질 때 같이 휘말릴 것이라는 얘기도 있지만, 이는 항성 간 거리와 상호 중력 관계를 감안했을 때, 거의 무시해도 좋을 만큼 낮은 확률이다. 단, 우리 은하의 중력권에서 안드로메다 은하 중력권으로 옮겨 탈 확률은 있으나 어차피 두 은하는 끝내 하나의 거대 은하가 된다.
태양의 표면의 플라스마가 끓어 오르는 형태가 세포 집합처럼 보이는데 각 세포의 크기는 미국의 텍사스주만 하다. 링크
원래 태양 옆에 쌍둥이 별이 있었다는 가설이 나오고 있다. #
지구에서 일몰 때 서쪽에서 관측되는 태양은 파장이 짧은 빛들이 낮보다 더 많이 산란되어 주황빛을 띄며 지구에서 관찰한 달 만큼은 아니지만 보기에 상당히 황홀하다. 하지만 낮에 떠있는 태양은 빛이 너무 강해서 최소한 직접 쳐다보기가 어려울 정도다. 물론 태양을 우리가 지구에서 안전하게 관찰할 수 있는 이유는 지구의 자기장과 대기층의 영향으로 태양에서 방출되는 파장이 짧은 감마선이나 X선, 단파장 자외선이 지표면에 도달하지 못하기 때문이다. 물론 우주 공간에서 차폐막이 없이 태양빛을 직접 쬔다면 감마선을 비롯한 방사선을 직방으로 맞는 것이기 때문에 매우 위험하다.
태양빛의 스펙트럼을 관찰하면 노란색 계열의 빛을 가장 많이 방출하는 G2계열 항성이지만, 사실 모든 파장의 빛이 많이 섞여있기에 실제 지구 대기의 산란 현상이 없는 상태에서 맨눈으로 관찰하면 그냥 눈부신 백색이다.
3. 색
태양의 표면 온도는 5778 K으로, 이는 분광형으로 G형에 속한다. 이를 근거로 흔히 태양을 노란색 별이라고 많이 칭하지만 이는 지구 대기의 산란에 의해 많이 왜곡된 색깔이다. G형 별의 실제 색깔은 (우주에서 아무런 방해 없이 관측했을 때) 푸른색이 약간 섞인 흰색[15]이며, 실제로도 낮에 하늘 높이 뜬 태양은 흰색에 가깝다.[16]
더 자세히 설명하면 G형의 항성은 일관된 색을 지니고 있지 않다.[17] G형 중 뜨거운 편(태양 등)인 항성의 실제 색은 아주 미미한 푸른 빛을 띠는 흰색이며, G형 중 차가운 편(고래자리 타우 등)인 항성의 색은 완벽한 흰색이다. 별 색 정리
태양의 색은 지구에서 대부분(낮에) 흰색으로 보인다. 태양은 자외선, 가시광선, 적외선 등 넓은 스펙트럼의 빛을 내고 우리는 가시광선의 파장이 눈에 들어올 때, 무지개 색이 다 합쳐져 백색으로 보인다. 색은 인간이 파장을 시각적으로 구분하는 것이다. 다 들어와서 구분이 안 되니 백색으로 보이는 것. (동아일보 최준곤 고려대교수) 주로 태양을 직접 볼 수 있는 때인 어스름에는 레일리 산란에 의해 적색~주황색으로 보인다. 이것이 태양이 붉은색이라고 착각하게 만드는 주된 원인.
문화에 따라 태양의 색을 다르게 봤는 데 이를 언어를 통해 이해할 수 있다. 한국어에서는 태양을 흰색으로 봤는데 이는 고대 한국어 시절까지 있다가 이후 사라져서 현대에는 남아 있지 않다. 다만 어원 정보로는 남아 있는데, '해', '희-', '하얗-'의 어원이 모두 'ᄒᆡ'로 같다. 태양을 흰색으로 본 까닭은 하늘 숭배 사상에서 가장 높고 고귀한 존재를 해, 즉 태양으로 봤기 때문인데, 하루 중 해가 가장 높고 강하게 떠 있을 때의 색이 흰색이기 때문이다. 이 때문에 한민족은 고대 시절부터 이미 흰색을 좋아했음이 사서에 기록되어 있고, 제식에서도 거울을 만들어 밝은 햇빛을 비추는 것으로 지도자의 권위를 상징했다.
중국도 태양은 청천의 백일이라고 하여 오래전부터 하얗게 인식한다. 중화민국의 국기 청천백일만지홍기가 대표적. 날 일(日)과 흰 백(白)의 파자 관계도 이를 뒷받침한다. 황제의 상징색이 노란색인 것과 태양의 색은 상관 없다.
이웃 언어인 일본어를 포함한 많은 문화권에서는 태양을 빨간색으로 봤는데[18] '붉은 태양'과 같은 상투적인 표현은 일본에서 먼저 활발히 쓰여 왔다. 단 오늘날 기준으로 우리가 태양을 붉은색과 연관짓는 것이 반드시 일본어적 요소라고 보기는 힘들다. 앞서 썼듯이 고대 이후 한반도에서도 '태양=>흰색'이라는 관념이 사라지면서 점차 다른 문화권처럼 '태양=불=붉은색'이라는 연상과정이 생겨났기 때문이다.
참고로 먼지나 구름 등에 의해 빛이 산란되는 경우는 미(Mie) 산란으로 설명해야 한다. 미 산란은 기본적으로 지구 대기를 구성하는 기체 분자들이 아닌 먼지와 같이 분자의 크기가 큰 에어로졸들에 적용된다. 미 산란은 레일리 산란에 비해 파장에 의존도가 적기 때문에 상대적으로 여러 파장대의 빛을 고루 산란시킨다. 따라서 먼지가 태양빛을 산란할 때는 콘트라스트를 감소시켜 노을이나 하늘빛이 뿌옇게 보인다. 흔히 노을의 원인 자체를 먼지 때문이라 이야기하며 미 산란을 적용시키려는 경우가 있지만, 부정확한 설명이다.
화성에서는 지구와 정반대로 석양이 파란색인데, 이유는 지구보다 대기가 엄청나게 희박하고(거의 1%) 그나마도 이산화탄소가 대부분이라 단파장이 산란되지 않으며 오히려 산화철을 비롯한 입자가 굵은 먼지들에 장파장이 산란되어 석양이 푸르게 보이게 되기 때문이다. 즉 우리가 보는 태양의 색은 여러 가지 환경적 요인으로 왜곡되어 보이는 것임을 알 수 있다.
4. 구조
채층
태양 대기의 아랫부분에 위치하는 얇은 대기층으로, 붉은색을 띠며 개기일식이 시작되거나 끝날 때 잠깐 볼 수 있다. 광구 표면에서 약 3,000 km~5,000 km 고도까지 존재한다. 광구의 1만분의 1, 해수면 위 지구 대기의 약 1/100,000,000 정도의 밀도로 극도로 희박하며, 광구가 더욱 밝기에 평상시에는 보이지 않는다. 채층은 H-alpha 필터를 사용하여 볼 수 있다. 왜냐하면 채층에서 수소의 발머선인 H-alpha선(656.3 nm, 붉은색)이 가장 강하게 방출되기 때문이다. 또한 개기일식 때 붉은색으로 빛나는 채층을 관측할 수 있다. 채층은 고도가 높아질수록 온도가 높아지며, 코로나까지 가서는 급격하게 상승한다.[온도변화]
광구
태양에서 실질적으로 빛이 나오는 구역으로, 우리가 보통 태양의 표면으로 인식하는 '빛을 내는 구체'를 상상하면 된다. 온도는 약 5,800 K이다. 영역이라기보다는 두께가 없는 한계지점 정도로 이해하기 쉽지만 사실 광구 또한 두께를 가지고 있는데, 이는 태양이 완전히 불투명한 것이 아니기 때문이다. 따라서 광구의 영역은 태양 표면에서 내부로 약 수백 km정도까지 연장된다. 현대에 와서 정립된 정의로는 약 50%의 빛이 산란되지 않고 투과할 수 있는 깊이까지를 광구라 칭한다. 지구 전체를 비춰주는 눈부신 태양빛이 방출되는 구역이지만 태양의 구조 중 온도가 가장 낮은 영역이기도 한데, 이는 태양 표면을 벗어나고 나서는 오히려 온도가 올라가기 때문이다.
대류층
태양 반지름의 0.7배부터 태양 표면까지의 영역. 복사층보다 온도가 낮아 이온화되지 않은 수소가 많기 때문에 불투명하다. 따라서 복사보다는 주로 대류를 통해 열이 전달된다. 태양 표면에서 많은 수의 쌀알 무늬들이 보이는 것도 우리가 대류층의 단면을 보고 있는 것이기 때문. 태양의 자기장은 대류층의 플라스마 대류로 인해 발생한다고 생각되며, 외핵의 대류로 인해 자기장이 발생하는 지구와 달리 매우 역동적인 자기장이 발생한다.
복사층
핵에서부터 태양 반지름의 0.7배까지의 영역으로 대부분 이온화된 수소로 이루어져 있다. 주로 복사를 통해 열이 외부로 전달되기 때문에 이러한 이름이 붙었다. 빽빽한 플라스마 상태라 복사가 직진하지 못하고 전자에 흡수 → 재방출 → 다시 전자에 흡수...를 반복하며 에너지가 전달되므로 핵에서 발생한 에너지가 복사층을 통과하는 데는 대단히 오랜 시간이 걸린다. 태양의 경우 에너지가 복사층을 완전히 통과하는 데 평균적으로 약 17만 년이 걸리는 것으로 알려져 있다.
핵
태양의 가장 중심부에 위치한 구조이다. 태양 반지름의 약 0.2배 정도까지의 영역을 칭하며 온도는 1570만K정도로 가장 높다. p-p 반응에 의한 수소 핵융합이 이루어지는 태양의 에너지원이다. 의외로 핵융합 발전에서 목표로 하는 점화 온도(약 1억 도)에 비해서는 낮은 편인데, 이는 태양 중심부의 압력이 워낙 높아(약 2,600억 기압) 이 정도온도로도 충분히 핵융합이 가능하기 때문이다. 이 단계에서 태양은 헬륨을 연소할 수 없기 때문에 핵융합에서 생겨난 헬륨은 중심부에 뭉쳐져 핵을 형성한다. 따라서 실제로 핵융합이 이루어지는 구역은 헬륨 핵을 중심으로 구각 형태를 띠게 된다.
코로나
태양의 가장 바깥쪽에 위치한 희박한 대기층이다. 태양 본체에 비해 그다지 밝지 않기 때문에 평소에는 보이지 않지만 개기일식이 일어나면 관측할 수 있다. 온도는 약 1,000,000 K 정도로 높기 때문에 강한 X선을 방출하며, 극히 높은 온도에 의해 철이 전리된 Fe+9와 Fe+13이온에 따른 금지선(각각 [Fe X]와 [Fe XIV]로 표기)이 관찰된다.[21] 5,000~6,000 K에 불과한 태양 표면보다 코로나가 200배나 높은 온도를 가지고 있는데, 태양이 에너지를 등방적으로 방출하는 아주 단순한 구조를 가지고 있다는 가정을 할 경우 안쪽보다 바깥쪽의 온도가 더 높은 이 현상은 열역학 제2법칙에 정면으로 위배되는 것처럼 보인다. 이 문제를 코로나 가열 문제라고 하며, 가장 유력한 설은 태양 표면에서 제트처럼 분출되는 기체가 코로나 속에서 초음속이 되어서 저항을 받아 운동에너지가 열에너지로 변하기 때문이라는 것이다. 아직까지 이를 명확하게 설명해주지 못하기 때문에 태양 천문학의 주요 떡밥이다. 자세한 것은 해당 문서로.
5-1. 태양 질량
태양의 질량(기호 M☉)은 약 2×1030 kg[22]이며 이는 지구 질량의 약 330,000배, 목성의 약 1,048배에 해당한다. 태양계의 모든 천체를 싸그리 박박 긁어 모아도 전체 태양계의 질량의 무려 99.866%를 태양이 차지하며, 다른 모든 천체들의 합은 고작 0.134%에 불과하다.[23]
태양은 여키스 분류법상으로 Ⅴ로, 왜성(dwarf)에 속한다. 물론 태양은 엄연히 주계열성이다. 같은 시대에 여러 연구 기관이 독자적으로 연구를 진행하다보니 일어난 일로 현직에 있는 사람들도 조금 곤혹스러운 분류. 즉, 여키스 분류법에서의 왜성 = 일반적으로 이야기하는 주계열성이다. 이와 관련 된 이야기를 할 때는 진짜 작은 별을 뜻하는 왜성과 구분하기 위해 앞에 '여키스 분류에서~'가 따라다니는 편이다. 혹은 무시하고 주계열성이라고만 이야기 할 수도 있다.
과거에는 태양이 아주 작은 편에 속한다는 고정관념이 있었는데 이는 적색왜성의 연구가 미흡했던 시절에 생겨난 말이다. 관찰하기 어려웠던 적색왜성은 물론 갈색왜성까지 제외한 상태에서 태양의 크기는 과소평가 될 수 있기 때문이다. 과거 오래된 천문학 관련 백과사전이나 어린이 학습물에서는 이러한 잘못된 정보가 기재된 경우가 있었다. 그러나 태양은 우주에서 상위 1% 정도의 질량을 가진 G형 주계열성이다.
실제로 우주에 있는 항성들의 평균 질량은 태양의 15% 수준이다. 그 이유는 우주 항성의 70%는 태양 질량의 50% 이하일 뿐인 적색왜성들이기 때문이다. 이들은 너무 어두워서 조금만 떨어져도 인간의 눈으로 못 본다. 이들은 보통 0.4광년만 떨어져도 안 보이는 반면에, 태양은 0.4광년은 물론 10배인 4광년이 떨어져도 매우 밝게 보이고[24] 90광년까지는 육안 관측이 가능하다. 나름대로 태양을 어머니 항성으로 지닌 지구는 흔치 않은 항성을 주인으로 삼는다고 볼 수 있다.
일반인들은 질량을 이용한 계산들을 안 하기 때문에 천문학자들이 매번 kg 단위를 사용해서 수십 자리 정도의 수를 한 번에 계산하는 줄 아는 경우가 흔한데, 태양의 질량은 천문학에서 가장 많이 쓰이는 질량 단위이기도 하다. 그 값도 적당히 크면서 비교적 가까운 거리에 있는 만큼 정확하게 측정할 수 있기 때문이다. 기호로는 질량을 뜻하는 M에 태양을 뜻하는 ⊙를 아래 첨자로 붙여 표현한다. 태양 질량 외에도 목성 질량과 지구 질량을 사용한다.
5-2 태양의 밝기
태양의 광도는 L☉라는 기호로 표기하며 가시광에서 그 값은 1.54×1026 W이다. 항성의 광도를 표기할 때 일종의 단위로써 사용되기도 한다.
지구에서 맨 눈으로 관측 가능한 천체 중에서 태양은 다른 별과는 비교가 불가능할 정도로 독보적으로 밝은 천체다. 지구에서 보이는 실시등급은 무려 -26.74등급으로 2위인 보름달(-12.6등급)보다 450,000배나 밝다. 비단 하늘 뿐만 아니라 가히 지구상에서 가장 밝은 광원이라고 봐도 무방하다.[25] 일상 생활에서 태양보다 밝게 빛나는 것은 찾아보기 힘들다. LED 문서에 나와있는 90,000 lm짜리 전등 10개를 1 m2 넓이에 집중 조사해야 겨우 태양과 비슷한 수준의 밝기가 나온다.
5,900,000,000 km나 떨어진 명왕성에서 보는 태양빛이 지구에서 보는 보름달보다 250배나 밝으며,[26] 지구에서 태양빛을 장시간 정면으로 바라보면 실명할 위험이 있을 정도이다.[27] 이 문서 위에 있는 영상과 같은 이미지는 실제로는 카메라에 들어오는 빛의 양을 엄청나게 낮춰서 찍은 것이다.[28] 때문에 흑점같이 상대적으로 어두운 부분은 이미지에서 검게 보인다. 실제로 많은 사람들이 흑점을 태양 표면의 검고 어두운 부분이라고 생각하는 경우가 많은데 이는 밝기를 낮춘 화면상에서 보이는 이미지일 뿐 인간의 시선으로 본다면 흑점도 어마어마하게 밝은 편이다.
망원경, 쌍안경, 돋보기, 현미경, 심지어 원시용 안경 등 모든 확대 장비를 다룰 때 0순위 중의 0순위로 지켜야 할 규칙이 바로 '태양을 향하지 마시오'이다. 망원경이든 쌍안경이든 스코프든 기본적인 원리는 넓은 동공으로 향상된 시력을 제공하는 것. 즉, 빛을 모으는 장치다. 1억 5천만 km 떨어진 지구에서도 맨눈으로는 순간적으로조차 쳐다보기 어렵고, 돋보기로 검정도 아닌 살구색 피부에 잠시 집광하는 것도 위험한 태양빛을 이러한 광학 장비로 본다는 것은 문자 그대로 돋보기로 눈을 지지는 고문이나 다름없는 행위다. 구경 3 cm 남짓 되는 파인더도 여러분의 눈을 태워먹기에는 충분하니 크기가 작다고 방심해서는 안된다. 특히 필터를 끼워 태양 관측을 할 때 파인더용 태양 필터는 없는 경우가 대부분이므로 실수로라도 보는 경우를 막기 위해서 파인더는 아예 빼 놓자. 천체망원경으로 태양을 관찰할 때는 접안렌즈를 지나 초점이 맞는 곳에 열에 강한 흰색 판을 갖다 놓아 거기에 맺힌 상을 본다. 이것을 투영법이라고 하는데 접안렌즈를 나와 판으로 향하는 빛이 레이저처럼 옆에서 육안으로 보이는 수준이며 렌즈가 과열로 녹아 버릴 위험이 있어 일정 시간마다 교체하거나 냉각해야 한다. 천문대에 단체 견학을 갔을 때 투영법으로 태양을 관측하는 활동이 있다면 빛의 경로에 나무토막 같은 것을 대서 타는 모습을 보여주기도 한다. 실제로 한 고등학교에서 친구에게 '장난'을 친다고 천체망원경을 태양으로 향하게 하고서는 보게 만든 사고가 발생했는데, 피해자가 아주 잠깐 눈을 댔다가 바로 뒤로 물러난 수준이었음에도 원래 정상이던 시력이 0.3까지 떨어지는 영구적 시력손실을 입었다. 절대로 망원경을 통해 태양을 직접적으로 관찰하려고 하면 안된다.
위의 사례처럼 천체망원경이나 기타 망원경으로 관측하는 수준이 아니라 그냥 DSLR 줌렌즈로 촬영하는 선에서도 당연히 태양촬영 전용 감광필터를 사용해야 하는데 ND 100000필터의 경우 0.001%의 투과율을 가졌다. 십만분의 일의 투과율이라는 소리다! 그럼에도 필터 제조사에서는 촬영시 광학용 뷰파인더로 태양을 직시하는 것을 엄격히 금지하고 있다. 라이브뷰[29]로만 보라는 것이다. 이 필터가 일상에서는 동적인 느낌을 살리기 위한 장노출을 위해 쓰는 필터인데 설정에 따라 다르지만 5분을 노출촬영해도 우리 눈에 어둡게 보이는 사진이 나올 정도인데 태양 촬영에는 그런 거 없고 그냥 찰칵!(10000/1초 이상) 수준이어도 매우 밝게 나온다. 때문에 태양을 향해 광학장비를 사용할 때는 이러한 점들을 필히 숙지하고 가야한다. 장비도 장비대로 고장나지만 관측자와 촬영자의 시력이 충분히 위협받을 수 있다.
태양의 절대등급은 4.8등급으로 어두운 별이라고 착각하기 쉽지만, 25광년 이내에 있는 주변 별 172개 중에서 태양보다 밝은 별은 일곱 뿐이다.[30] 다만 밤하늘에서 인간의 눈으로 볼 수 있는 별들의 상당수는 분광형으로 치면 B나 A로 태양보다 훨씬 더 밝고 희귀한 별들이다.
태양은 수소를 태우는 동안 10억 년마다 밝기가 10%씩 증가한다.태양과 지구, 어떤 것이 먼저 끝날까?[31]
볼로매트릭 태양광도도 사용된다. 이는 태양의 총 광도로, 3.828×1026 W이다. 볼로매트릭 태양광도는 항성의 반지름을 구하는 데에 널리 사용된다.
5.2.1 태양 빛
태양이 내뿜는 빛은 다양한 파장의 전자기파를 포함한 백색광으로, 그 자체에도 상당량의 에너지가 있다. 지구는 태양이 발산하는 에너지의 아주 일부만 받는다. 단순 계산으로 공전 궤도를 원형이라 생각하면, 지구는 반경 1억 5천만 km의 구면에서 반경 6,400 km의 원에 해당하는 부분만 에너지를 받는다.
한편 우리가 보는 태양은 8분 19초 전의 태양인데, 이는 태양빛이 광구를 탈출하여 지구까지 도달하는 데 8분 19초가 걸리기 때문이다.
따라서 만약 태양이 한 순간에 파일을 삭제하듯 사라진다면, 8분 19초 동안은 하늘에 태양이 보이지만, 8분 19초가 지나면 갑자기 하늘이 한 치 앞도 내다 볼 수 없을 정도로 컴컴해지는 동시에 태양이 하늘에서 사라질 것이다. 그리고 동시에 지구는 공전 궤도를 이탈할 것이다. 왜냐하면 중력파의 속도가 빛의 속도와 같기 때문.
또, 우리가 보는 태양빛은 평균 17만 년 전의 빛이기도 하다. 왜냐하면 태양의 핵에서 생성된 빛이 광구까지 나와서 방출되기까지 약 17만 년이 걸리기 때문이다. 태양의 반지름은 대략 70만 km로 빛의 속도로 약 2초 정도가 걸리는 거리지만, 태양의 내부에서 엄청난 양의 전자들과 부딪히면서 빛의 이동거리가 길어지기 때문에 결과적으로는 17만 년 정도 걸린다. 감마선의 형태로 방출된 핵융합 에너지는 태양 내부에서 여러 입자 사이에서 반사되어 떠돌며 차츰 에너지를 잃고 광구에 도달하면 주로 가시광선의 형태로 우주 공간에 방출된다.
5.2.2 일상생활에서의 체감사 태양의 밝기
보통의 서적이나 교재, 인터넷 문서 등에서 태양의 밝기에 대해 조사하면 겉보기 등급 -26.7등급, 절대 등급 4.8등급 등등 천문학적인 관점에서만 기술되어 있기 때문에, 우리가 일상생활에서 자주 쓰는 광원인 전구나 방 전등 등과 비교했을 때 구체적으로 얼마나 밝은 지에 대해서는 제대로 들어본 적이 없었을 것이다.
구체적인 비교에 앞서, 일상생활에서 밝기의 단위로는 lx(럭스)를 사용한다. 이는 단위 면적 당 내리쬐는 빛 선속, 또는 광속[32]에 대한 국제 표준 단위이다. 예를 들어, 전구에서 발산하는 광자 하나하나를 빛의 화살 같은 것으로 생각하여, 단위 면적당 얼마나 많은 화살이 내리꽂히는가를 설명하는 단위가 바로 lx라고 생각하면 된다. 반대로 전구 그 자체가 얼마나 많은 화살을 방출하는지에 대한 단위는 lm(루멘)이며, 이 lm을 면적으로 나눈 것이 바로 lx이다. 참고로 평범한 가정의 거실 밝기는 약 300 lux이다.[33][34]
위의 수치들을 인용해서 말하면 매우 가변적이다. 스마트폰에서 조도 센서 앱을 깔면 남녀노소 누구나 쉽게 해당 위치의 밝기를 측정할 수 있는데, 전등과 얼마나 떨어져 있느냐에 따라 밝기가 매우 크게 바뀐다.
예를 들어 한밤 중 가로등 근처에서 밝기를 측정하면 바로 아래에 서서 재면 300에 육박하지만 가로등과 충분히 멀리 떨어지면 lx가 한 자리 수까지 떨어지다가 이윽고는 0이 된다. 이는 핸드폰 조도 센서가 소숫점까지 정밀하게 측정하지 못하기 때문. 물론 사다리 같은 것을 타고 올라가 가로등 앞에 폰을 바짝 붙이면 태양빛에 필적하는 밝기가 측정될 것이다. 바꿔 말하면 한밤중에도 사람이 충분히 생활할 수 있도록 해줄 정도로 밝은 가로등을 바로 코앞에서 바라봐야 비슷한 밝기를 느낄 정도로 태양빛의 밝기가 어마어마하다는 뜻이 된다. 가로수 하나하나마다 가로등을 부착해도 대낮보다는 훨씬 어둡다.
또한 유튜브 등지에서 개기일식을 관측하면 서서히 깜깜해지는 것이 아니라 태양의 99%가 가려진 순간에조차 환하다가 갑자기 어두워지는 것을 발견할 수 있다.
위의 표를 보면 알겠지만, 태양의 99%가 가려져도 lx는 1000을 넘으며 대부분의 실내 공간은 아무리 밝아도 500 내외를 넘지 않는다는 것을 감안하면 주변이 아주 환하게 보이는 것은 당연하다. LED 독서등을 최대 밝기로 세팅한 후 바로 아래의 책상에서 밝기를 측정하면 대략 1000 lx가 나온다. 보통 책 등을 놓는 위치에서는 500~600 lx. 밤이나 실내에서는 상대적으로 동공이 커지기 때문에, lx가 세 자릿수를 넘어가면 오히려 눈부셔서 공부에 방해가 된다.
하지만 인간이 밝기를 체감하는 데 있어 가장 중요한 요소를 간과하면 안 되니, 그것은 바로 동공이다. 동공이 작을수록 빛이 망막에 적게 비친다는 것을 이용해 동공의 크기는 끊임없이 조절되는데, 예를 들어 사람은 밤에 자려고 방불을 꺼도 시간이 지나면 주변 사물을 잘 인식할 수 있게 되는 것이 대표적이다.
혹은 커튼이 매우 두꺼워 빛을 굉장히 잘 차단하여 방이 매우 깜깜한 상태에서 갑자기 커튼을 쳐 아침 햇살이 방을 그대로 직격할 때 눈을 못 뜰 정도로 너무 눈이 부셨던 경험을 한적도 있을 것이다. 즉 위의 표에서 직사광선은 인간들의 인공 조명보다 압도적으로 밝은 것이 사실이나, 밤에는 빛을 더욱 잘 인식할 수 있도록 동공이 넓어지기 때문에 실제로 체감하는 밝기 차이는 수치적 차이보단 훨씬 적을 것이다.
실제로 동공이 충분히 넓어져 어두움에 적응이 되면 달빛만 비추어도 글자를 읽을 수 있을 정도가 된다. 달빛은 생각보다 상당히 밝아서, 실제로 해안에서 경계 임무를 맡는 군인에게 있어 달의 위상과 월출/월몰 시각은 매우 중요한 요소이다.
5.3 태양의 반지름
태양의 반지름은 R☉이라는 기호로 표기하며 그 값은 약 696,340 km이다. 태양 반지름은 항성의 반경을 표기할 때 단위로써 사용되기도 한다.
6. 태양의 자기권
2016년 3월 12일, NASA가 촬영한 태양 자기권 그림. 링크 수많은 실선들로 표시된 부분, 그러니까 높이 뻗지 못하고 도로 태양으로 들어가는 자기권은 흑점하고 코로나에서 방출되는 자기권이다.
태양 자기장은 태양계 전체를 홀로 지탱할 정도로 매우 강력하다. 그리고 극성을 가지긴 했는데 흑점, 코로나 영향이 훨씬 더 크다. 태양계 행성들은 천왕성과 해왕성같이 자기장 축이 자전축과 어긋났을지언정 일정 방향을 향하는 자기권을 가졌다. 그런데 태양은 항성이라 자기권이 매우 특이한 모양이다. 물론 태양도 N극과 S극은 있다. 지구자기장은 "북극이 S극이고 남극이 N극"인데, 2016년의 태양은 "북극이 N극이고 남극이 S극"이 나온다. 즉 태양에 자석을 가져가면 S극이 북쪽을 가리키고 N극이 남쪽을 가리키게 된다. 단, 흑점과 코로나가 워낙 강력해서 자석이 흑점, 코로나 방향으로 핑핑 돈다는 게 큰 차이점. 물론 11년마다 자기극이 역전되기 때문에 큰 의미는 없다.
태양 자기권이 특이한 모양인 이유는 태양이 항성으로 핵융합을 직접 하기 때문이다. 태양 같은 항성의 자기장은 행성들의 자기장과는 달리 플라스마의 대류로 인해 형성된다. 이 때문에 태양 자기장의 활동은 매우 역동적이며, 지구에서는 몇만 년에 한 번꼴로 일어난다는 자기극의 역전이 11년에 한 번씩 일어난다. 태양의 경우 적도에서 측정한 자기장의 강도는 지구 적도에서 측정한 자기장의 약 두 배 정도인 평균 50 μT(마이크로테슬라) 정도이다.
고에너지 입자의 황(S) 대비 규소(Si) 성분이 태양 대기에서 가장 아래에 있는 채층의 상부에 억제돼 있는 플라스마와 같다는 것을 확인했다.
7. 태양의 공전(단위 : 은하년)
태양은 우리 은하의 중심부를 기준으로 2억 2,500만~2억 5,000만 년에 한번씩 공전한다. 2000년대까지만 해도 2억 년을 1은하년으로 추정했으나, 우리 은하의 추정 형태가 변경(정상나선은하 → 막대나선은하)되었다는 점과 우주의 팽창을 고려한 결과 공전 주기 추정치가 2.25억 ~ 2.5억 년으로 늘어났다.
태양의 공전 주기(2억 2,500만~2억 5,000만 년)를 1은하년이라고 한다. 태양의 나이가 약 50억 년이니 최소한 20번 이상 태양이 우리 은하 중심부를 향해 공전을 하고 있는 것이다.
태양의 공전 속도는 약 200 km/s이다.[55] 태양계에 있는 그 어떤 행성이나 왜행성, 소행성들도 태양의 공전 속도를 넘어서지 못한다. 태양계에서 태양보다 빠른 공전 속도를 보이는 천체는 혜성들, 그 중에서도 장주기 혜성들뿐이다.
태양은 공전 도중에 6400만 년 마다 우리 은하의 오리온자리 팔을 아래로 통과했다가, 팔을 위로 통과했다가, 오리온자리 팔 부근으로 돌아온다. 즉 수평에 가까운 태양계 행성들의 공전궤도와 달리, 태양의 공전궤도는 수직적으로도 고도 차이가 있다.
8.1 탄생부터 현대까지
태양은 현재 약 45억 6721만 살이며, 앞으로 약 79억 3100만 년간 핵융합을 할 수 있다. 연구가 불충분했던 2000년대 이전에는 서적에 50억 년 남았다고 기재된 경우가 많았다.[56]
약 45억 년 전 원시 태양계의 모체가 되는 성운이 모종의 이유로 압축되기 시작한다.[57] 10만 년 후 성운 중심에는 태양을 포함한 여러 원시성들이 탄생하게 된다.
약 3,500만 년간 지속되는 원시성 시절 동안 태양은 주로 중력수축에서 발생하는 에너지와 리튬, 중수소를 태우며 나오는 열로부터 빛을 내는데. 이로부터 나오는 에너지는 현재 태양보다 더 많았지만, 대부분의 빛이 태양을 두껍게 둘러싼 먼지 띠에 흡수되어 적외선으로 재방출되었다. 중력 수축 에너지는 오래가지 못하며 원시 태양은 계속해서 줄어 들며 어두워졌다.
태양이 수축을 거듭하여 중심부의 밀도와 온도가 충분히 높아졌을 때 수소 핵융합이 점화되었다. 이후 태양은 주계열성의 삶을 시작한다. 일반적으로 이 시점부터 항성으로 취급한다. 천문학 용어로는 이 시점을 영년주계열이라고 부른다.
막 주계열성이 된 태양은 현재의 약 80% 정도 밝기였고, 이 시기 태양은 수소뿐만 아니라 리튬, 베릴륨, 붕소 등의 잉여 연료를 같이 태우면서 에너지를 생성하였다. 이들 잉여 연료들이 점차 고갈되면서 태양의 밝기는 약 43억 년 전까지 꾸준히 감소하여 현재의 70%까지 떨어졌다. 주계열성이 시작된 이후 이 3억 년 정도의 기간을 구분지어 원시 주계열 단계로 부르기도 한다. 원시 주계열은 원시성과는 완전히 개념이 다르다. 원시성은 수소를 못 태우지만 원시 주계열성은 수소를 태운다. 다만 원시 주계열은 내부에 리튬, 베릴륨, 붕소 등이 아직 남아 있어 수소와 함께 이들을 태우는 기간이므로 구분지어 부른다. 다만 원시 주계열 기간을 구분짓지 않고 수소 핵융합을 시작한 시점을 영년 주계열로 하여 싸그리 공통 주계열 단계로 포함시키는 경우가 더 많다. 하지만 엄밀하게 구분하면 이렇게 기간을 나누는 것이 맞다.
원시 주계열을 벗어난 태양은 수소 핵융합을 지속하며 중심부에는 그 결과물인 헬륨이 쌓여 핵을 형성한다. 아직 태양은 헬륨을 융합하지 못하기 때문에 수소 핵융합이 이루어지는 구역은 중심부에서 점차 바깥쪽으로 밀려나 구각을 이룬다. 이 결과로 태양의 에너지 생성률이 조금씩 증가하여 마침내 현재의 광도에 도달한다. 태양의 나이는 약 46억 살, 표면온도는 5,778 K에 분광형은 G2 V이다.
8.2 태양의 미래
태양은 109억 살(약 63억 년 후)까지 비교적 안정적인 주계열성 단계에 머물지만 밝기는 조금씩 증가한다. 약 7~10억 년 후에는 너무 밝아진 태양으로 인해 지구의 온도가 올라가 거의 대부분의 생명체가 사라지게 된다.[61][62] 생명체가 멸종한 후 1억 년도 채 지나지 않아 지구의 온도는 온실 기체가 쌓여 물이 끓는점에 도달[63]한다. 태양은 앞으로 48억 년 후에 표면 온도가 5,848 K까지 올라가 정점을 찍고 1.7배까지 밝아진다.[64] 이후 태양의 표면 온도는 점차 내려간다. 이때 지구의 기압은 150기압에 이르고 온도는 500도로 매우 뜨거워진다. 쉽게 말해서 금성과 비슷한 환경이 된다.
109억 살 이후부터는 태양은 분광형 G5IV인 준거성이 되며 약 2.2배까지 밝아지고 온도가 약 5500 K정도가 된다. 준거성 단계에서는 서서히 밝기를 키우며 116억 살에 적색거성 단계에 들어선다. 표면온도는 5,270 K(분광형 G8III)까지 낮아지고 밝기는 5배에 이른다. 지구는 온실기체가 극도로 쌓이고 현 시점보다 3.5배 이상 밝아진 태양의 나이 115억 살부터 온도가 섭씨 1,000도 이상 올라가 대기를 잃기 시작한다. 118억 년 후 태양열로 지구의 대기는 몽땅 사라진다.
122억 살에는 3,000배까지 밝아지며 지름도 160배까지 커지는데[65] 이때 지구 궤도 이상까지도 커질 수 있다. 태양은 첫 번째 적색 거성 단계에서 28%의 질량을 잃는다.
이 단계에서 수성, 금성까지는 태양에 삼켜질 것이 확실하나 지구는 불확실하다. 지구 궤도를 집어삼킬 만큼 부피가 팽창하리라 예상되지만, 동시에 상당한 질량을 잃어서 중력이 약해지고 지구의 공전 궤도 또한 커져서 파괴되지 않을 수도 있다. 이때 태양 대기권 안으로 들어갔다고 행성 자체가 녹거나 하지는 않는다. 대기가 희박하기 때문. 만약 예상보다 더 안쪽으로 들어갈 경우 태양 대기의 영향으로 공전 속도가 점점 느려지며 안쪽으로 낙하하다가 태양의 조석력과 열기 때문에 조각조각으로 부서져 해체되고 결국 소멸한다.
첫 번째 적색 거성 단계가 끝날 무렵 중심 핵 온도는 약 3억 K까지 올라가 중심부에서는 헬륨 섬광이 일어나고 이후 태양이 수축하기 시작하며 두 번째 주계열 단계라고도 할 수 있는 수평계열 시기를 맞이한다. 태양은 약 1억 년 간 안정적으로 헬륨 핵융합을 하며 이때 밝기는 약 50배까지 줄어든다.[66] 하지만 헬륨이 고갈된 이후 태양은 급격히 밝아지기 시작하여 현 시점의 110배까지 밝아진다. 태양이 혼자서는 뭔 짓을 해도 태울 수 없는 탄소와 산소가 중심부에 쌓이게 되며 그 중심핵의 크기는 태양의 50% 수준까지 커지게 된다. 중심부 온도는 3억 2,000만 K까지 올라가며, 중심핵 바깥인 복사층의 헬륨과 수소가 폭발적인 핵융합을 일으키고 2000만 년만에 태양은 최대 8000배까지 밝아진다. 이 시기를 점근 거성 단계라 하며 태양이 일생 중 가장 밝은 기간이다. 크기는 400배까지 부풀어 화성 궤도까지 삼켜버린다.[67] 이 때도 궤도가 늘어나 지구, 화성이 삼켜지지 않을 수 있다.
점근 거성 단계 말기에 태양은 연료가 소진되어 수축하다가 헬륨이 점화되어 다시 폭발적으로 팽창하는 열맥동을 반복하게 된다. 이 과정에서 표면에 있는 대규모 질량을 방출하며, 마지막 질량을 낼 때 아름다운 행성상성운을 만들며 중심에 질량 절반 가량만 남은 중심핵이 드러나 지구 크기 정도의 백색왜성이 형성된다. 행성상 성운은 12,000년간의 짧은 기간만 존재하고 백색왜성만 남는다. 그 직후 멀리 있는 천체부터 아주 서서히 태양의 중력에서 벗어나기 시작한다. 다만 태양과 가까이 있었던 천체들은 태양쪽으로 끌려올 가능성이 높다.[68]
막 나온 약 124.7억 살의 백색 왜성은 10만 K가 넘어 뜨거운 푸른색으로 빛나지만 점차 식어간다. 이 백색 왜성을 지금 태양 위치에 가져다두면 지구에서 봤을 때 최대 보름달 정도의 밝기로밖에 보이지 않는다. 280억 살 즈음에는 온도는 약 2400 K, 지름은 지구의 약 1.4배, 질량은 태양의 54%, 광도는 태양의 0.0000048배가 된다. 광도가 너무나 낮고 중력이 약해지며 거리가 더 멀어진 태양계의 행성들에게는 빛과 열이 거의 전달되지 않기 때문에 행성들도 얼음과 암흑천지에 잠긴다. 모든 연료를 소진하고 그저 한때 타오르던 용광로의 잔열만을 내보내는 태양은 더 이상 항성이 아니다.
그 후에는 그저 남은 행성들과 함께 아득할 정도로 긴 시간 동안 우주를 떠돌다가 은하의 중심 초대형 블랙홀로 끌려가 흡수되던지, 아니면 아예 은하의 중력권에서도 튕겨나가 완전한 떠돌이 별이 될 것이다. 이 시점에서 이미 한참 전에 우리 은하와 안드로메다 은하가 충돌하여 밀코메다가 형성된다. 이 충돌 과정에서 복잡한 중력 간섭으로 태양계가 중심부로 끌려갈 수도 있고, 아니면 은하 중력권에서 튕겨나가 떠돌이 항성이 될 수도 있다. 튕겨나가지 않는다면 궁극적으로 은하 중심 블랙홀에 흡수될 것이다.
별이 파괴되지 않아도 수백~수천조 년 후에는 잔열마저 완전히 사그라들어 흑색왜성이 되어 어떠한 빛과 열도 내지 못하게 된다. 태양계가 그때까지 유지되고 있다면, 태양계의 행성들은 죽어버린 태양과 함께 조용히 우주를 떠돌다가 1000억~1000조 년이면 여러 작용들을 받아 행성들이 다 튕겨나가 태양계가 해체되어 백색 왜성만 홀로 남는다는 주장이 있다. 약 1해 년 후에 모두 태양의 중력에 이끌려 충돌해서 사라질 것으로 추측된다는 말도 있다. 자세한 것은 태양계 문서의 '미래' 문단으로.
흑색왜성이 된 태양이 블랙홀에 흡수되지 않는다면 그 뒤의 운명은 양성자 붕괴가 있냐 없냐에 따라 갈린다. 양성자 붕괴가 있다면 400 W의 에너지를 발산하며 서서히 질량을 잃다가 목성 정도의 크기까지 늘어난 뒤 줄어들어 소멸한다. 또한 양성자 붕괴는 원자 번호를 낮추므로 구성 성분도 탄소에서 수소와 헬륨으로 변한다. 양성자 붕괴가 없다면 구성 원소들이 양자 터널링으로 인해 융합되어 101500년 뒤에는 철 별(iron star)이 될 것이다. 철 별이 된 태양은
1
0
1
0
26
10
10
26
년 후에는 양자 터널링으로 인해 서서히 압축되어 결국 블랙홀로 붕괴할 것이다. 블랙홀이 된 태양은
1
0
1
0
120
10
10
120
년에 걸쳐 호킹 복사에 의해 증발해서 소멸한다. 끝
#용인철학관, #용인신생아작명소, #용인개명작명, #동백철학관, #동백개명작명, #동백이사택일, #용인결혼택일, #죽전결혼궁합, #분당결혼궁합.